
This research is part of an effort to account for
mechanical equilibrium and material strength in geo-
metrical models of folds. Cubas et al. (2008) have
shown that the external approach of limit analysis
(Salençon, 2002) could be applied to thrusting, pro-
viding the means to assess the lifetime of a thrust fold
and to construct sequences of folds while keeping the
geometrical simplicity of the constructions proposed
in the seminal work of Suppe (1983). This comple-
mentary project is aimed at constructing statically
admissible stress fields at any step of the development
of these structures. The EEM, which is inherited from
the internal approach of limit analysis, has been
shown by Souloumiac et al. (2009), to be applicable
to these geological structures, as illustrated here for
the case of an accretionary wedge. 

The Equilibrium Element Method

The EEM is the systematic application of the internal
approach by numerical means (Pastor, 1978). It pro-
vides the lower boundary in the tectonic force as well
as the optimal stress field satisfying equilibrium and
the limited strength of the materials. The example of

the wedge is chosen to illustrate the feasibility of this
method for geological structures, an example of a sin-
gle wedge being presented in figure 1. The wedge
OADCB of height H either slides over the weak
décollement (OB) or faults internally. The angle β is
the dip of the décollement and thus the angle between
gravity and the y axis. The tectonic force F results from
a linear distribution of the stress along the left bound-
ary OA. The topography has a slope α from A to D
and is flat from D to C.

The domain OADCB is discretized with crossed tri-
angles as illustrated in figure 1. Each triangular ele-
ment provides a linear stress distribution with nodal
unknowns: the three stress components (σx, σy, σxy).

The components of the optimal stress field are chosen
within a set of statically admissible (SA) stress fields
which satisfy the following two conditions (Salençon,
2002). First, mechanical equilibrium must be
enforced over the domain and its boundary.
Mechanical equilibrium leads to a set of two equa-
tions over each triangular sub-domain. It leads also
along the three sides of each triangular element
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(except at the boundary of the domain) to two equa-
tions to enforce the continuity of the stress vector,
leading to jumps in certain components of the stress
vector. To this end, two collapsed triangles are
attached to each side of an equilibrium element as
shown in figure 2. Krabbenhøft et al. (2005) have
shown that once a triangle has collapsed, so having
zero surface, writing the two equilibrium equations is
equivalent to writing the jump conditions.

At the boundary, the stress vector must be equal to the dis-
tributed load defining the boundary conditions. As shown
in figure 1, surface AC is stress-free and the normal stress
on side AO has an imposed linear gradient with depth. 

The second condition on the SA stress field is that it
must remain in the convex strength domain at every
point of domain Ω and along major discontinuities
such as the décollement. This strength domain is
bounded by the Coulomb criterion (cohesion c and
friction angle Φ) in our case. The linearity of the
stress interpolation means that if such constraint is

respected at the three nodes, it is respected over the
whole element.

The equilibrium and the limitation of the strength
domain lead to a set of linear equations and inequali-
ties for the nodal stresses. The objective function of
this optimization problem corresponds to the force F

which is to be maximised. Here, it is the gradient
which needs to be maximised. The result of this opti-
mization is the value of the lower boundary on the
tectonic force.

The set of equalities and inequalities is constructed
with the standard finite-element code SARPP (2007),
which has been extended for the Equilibrium Elements
Method. The optimization problem is solved with the
commercial package MOSEK (2007), throughout the
rest of this contribution. The next part presents the
results obtained for an accretionary wedge.   

Applying the EEM to the Nankai accretionary
wedge

The objective is now to apply the EEM to the Nankai
accretionary wedge, on the SE coast of Japan, which
has the geometrical parameters presented in figure 3.
This 2D structure has been interpreted by Moore et
al. (1991) from the seismic profile NT62-8. The
cohesion cD and the friction angle ΦD are the specific
properties of the total décollement and the cohesion
cB and the friction angle ΦB are those of the bulk
material. The other boundary conditions are the same
as the boundary conditions described in figure 1.
Figure 3 also shows the mesh with triangular elements
described in figure 2. This mesh is refined with
12,720 elements (including collapsed elements for
the stress discontinuities) and 9640 nodes.

The first result, presented in figure 4, is the failure
mode for a value of the friction angle on the décolle-
ment ΦD = 9°. It is analyzed with the distance to
Coulomb‘s criterion, in a scale varying from zero to
one. If the stress state exactly satisfies the criterion,
the scaled distance is equal to zero (white color). If the
stress state is at a distance of 3% from the stress refer-
ence, the distance is one (black color).

The incipient thrust is approximately where predicted
by Morgan and Karig (1995) and Cubas et al. (2008),
although the EEM value of the friction angle on the
décollement (ΦD = 9°) is smaller than the one found
in the latter contribution (ΦD = 11°). The ramp dips
at 30° and the associated thrust dips at 35°. A second
thrust appears that corresponds to a small topograph-
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Figure 1. Geometry of an accre-
tionary wedge.

Figure 2. Illustration of the two collapsed triangular elements
proposed by Krabbenhøft et al. (2005).
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ic perturbation. The décollement is used as far as the
base of the major ramp represented in figure 4.

The second result, presented in figure 5, concerns the
distribution of principal stresses in the wedge. The
EEM directly provides the values of optimal stresses at
each node of the mesh. The optimal stress field is pre-
sented for a friction angle on the décollement of 9°.
The first plot represents the distribution of the quan-
tity: (σI-σII)/2, the values ranging from 0 on the top
surface to 30 MPa in the left corner at the décolle-
ment. The second plot shows the distribution of the
quantity: (σI+σII)/2, the values ranging from -60 MPa
in the bottom left-hand corner to 0 on the top sur-
face. This plot shows the influence of the surface
topography on the stress distributions.

The third result obtained by the EEM is the value of
the lower boundary on the tectonic force, which is

59.82 GN for ΦD = 9°. These calculations take only a
few minutes with the optimization software MOSEK
(2007) on a personal computer. So the EEM is an
efficient method (in terms of CPU time) to provide
the stress distribution, the shape of the bulk failure
and the lower boundary in the tectonic force.

Discussion and conclusion

The objective of this paper is to present a numerical
solution to the internal approach of limit analysis,
referred to as the Equilibrium Element Method.
This method is applicable to complex geometries
with major discontinuities such as a décollement. It
is a powerful tool for constructing the stress distri-
bution with short calculation times. This optimal
stress field is valid at any step of the development of
folding. The evolution of the system is predicted by
the kinematics approach (Cubas et al., 2008) based
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Figure 4. The failure mode illus-
trated with the distance to the
Coulomb criterion for a friction
angle of ΦD = 9°.

Figure 5. Distribution of differ-
ence of principal stresses for a
friction angle of ΦD = 9°.

Figure 3. The mesh with triangular elements over the section through the Nankai wedge used for the EEM and parameters.
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on the external approach of the limit analysis. So the
EEM is complementary to the external approach.
Application of the two procedures to an evolving

fold provides the stress distributions over the opti-
mized structure, as well as an error estimate for the
tectonic force.
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