
Paleostress analysis of fault-slip data sets is an impor-
tant method for reconstructing tectonic events in
deformed rocks. Several approaches based on an
inverse technique were proposed in the past, but Fry’s
idea (Fry, 1999, 2001) led to a breakthrough (was a
turning point) in its visualization. His theory was
expanded and adapted by Shan et al. (2003), Sato and
Yamaji (2006), among others. This paper highlights
some new aspects of this method in full 9D space,
which contribute to a better understanding of paleostress
problems.

Linear algebraic expressions will be needed for our
explanation, so it is necessary to outline the notation
system first. The bold characters note columnar vec-
tors (from 3 to 9 dimensions) and angle brackets note
square matrices (from 3 to 9 dimensions). Italics indi-
cate scalars.

Principles

Fault-slip data are the main data for paleostress
analysis. Each fault-slip datum consists of the orien-
tation of the fault surface (dip direction α and φ
dip) and the direction of striation complemented by
sense of slip (expressed as angle of pitch p). They
can be represented by two orthogonal unit vectors

(n, l) and by a derived third orthogonal unit vector
(m) in three-dimensional real space. Vector n = (nx;
ny; nz)T is the normal to the fault surface and is
down directed (i.e. nz ≥ 0), vector l = (lx; ly; lz)T is a
vector oriented in the direction of hanging-wall
movement (i.e. parallel to striation). The third vec-
tor, m = (mx; my; mz), lies in the fault surface at a
right angle to the striation, which means it is per-
pendicular to n and l (Fig. 1). It could be counted
as the vector product m = n × l.

To solve the inverse problem, Fry (1999, 2001) pro-
posed to use the fact that shear stress Sm in m direc-
tion is equal to zero:

(1),

where [Tσ] is the 3-dimensional matrix of the stress
tensor:

(2),
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m · [Tσ] · n =Sm = ∑minjσij = 0
i,j

[Tσ] =

σxx   σxy   σxz

σyx   σyy   σyz

σzx   σzy   σzz



and m and n (i.e. mi and ni) are known parameters of
fault-slip orientation. The sum ∑minjσij may be
expressed as a scalar product of two vectors:

(3),

where C is the 9D vector representing fault-slip
data (“C-line” after, Shan et al., 2004; Li et al.,
2005) based on minj parameters when Cij = mi · nj
and the vector Tσ is a stress tensor rearranged from
σij to the 9D vector in the same way. Equation (1)
can be visualized as a perpendicularity condition
of the considered vectors C and Tσ in 9D space; in
other words, we are looking for a stress vector Tσ ,
which is perpendicular to the C-lines representing
fault slips. It is a problem equivalent to fold axis
analysis in real 3D space, where we are looking for
a fold axis perpendicular to bedding normal lines.
We use this analogy to explain multidimensional
paleostress analysis.

Direct inversion of fault-slip data

From equation (1) rewritten in the form:

(4),

it is evident, that σij represent nine unknowns we are
looking for and Cij are nine known coefficients. This
equation has many solutions because there are so
many unknowns, therefore other complementary
restrictions were proposed (Fry, 1999):

1. Due to the moment equilibrium, the shearing
components of the stress tensor are equal
(e.g. σxy - σyx = 0; σxz - σzx = 0; σzy - σyz = 0), so there
are only six independent components in practice.

2. The isotropic component of the stress tensor has no
effect on fault-slip data and could be assumed equal
to zero: σxx + σyy + σzz = 0.

Therefore we can solve a homogeneous system of lin-
ear equations in 9D, if we apply four limitative equa-
tions completed by four data equations (Eq. 4). The
calculated result represents the direction of the Tσ
vector in 9D. Using the Frobenius norm IF invariable
we can calculate unknowns σij. Because the Frobenius
norm represents Tσ vector magnitude, it is conven-
ient to choose the vector Tσ unitary:

(5).

The additional limitative equations could be
expressed as scalar products of two 9D vectors like the
equations representing fault-slip data: Axy · Tσ = 0;
Axz · Tσ = 0; Ayz · Tσ = 0 and Axyz · Tσ = 0, where A
are unit orthogonal vectors:

(6),

(7),

(8),

(9),

to which the unknown Tσ vector should also be perpen-
dicular. From this perspective, we can use the analogous
situation from 3D fold-axis analysis, where we are look-
ing for the fold β-axis just as a direction perpendicular to
the bedding planes’ normal vectors n1, n2. The fold β-axis
is calculated as the vector product: β = n1 × n2.

Figure 1. A visualization of three unit vectors representing a fault-
slip datum of sinistral-normal fault. Vector n is a down directed
normal vector to the fault surface, vector l is a vector oriented in
the direction of hanging-wall movement (i.e. parallel to striation),
and vector m lies in the fault surface at right angles to the striation.
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∑minjσij = C ˙ Tσ = •
i,j
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Cxxσxx+Cxyσxy+Cxzσxz+Cyxσyx+Cyyσyy+
+Cyzσyz+Czxσzx+Czyσzy+Czzσzz=0

Axy= (0;1/√2;0;-1/√2;0;0;0;0;0)T

Axz= (0;0;1/√2;0;0;0;-1/√2;0;0)T

Ayz= (0;0;0;0;0;1/√2;0;-1/√2;0)T

Axyz= (1/√3;0;0;0;1/√3;0;0;0;1/√3)T

(3),
IF= σxx+

2 σxy+
2 σxz+

2 σyx+
2 σyy+

2 σyz+
2 σzx+

2 σzy+
2 σzz=12
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Analogously, we can obtain the Tσ vector from the gen-
eralized vector product in 9D (see mathematical compen-
dia for definition, e.g. Onishchik, 2002, among others):

(10).

Symbols CI, CII, CIII, CIV are 9D vectors (C-lines)
representing four fault-slip data.

Just as the length of the resultant β-axis depends on
the deviation between vectors n1, n2, similarly, the
length of the resultant vector |T*

σ| depends on vector
deviations (angles) between the Ci and A vectors. In
other words, vector deviations between the Ci and A
vectors are represented by this length, which is equiv-
alent to the square root of the Gram determinant G =
det(T*

σ · T*
σ

T). The Gram determinant is according-
ly the way to evaluate errors of numerical inversion.
Magnitudes of the Gram determinant approximating
to zero indicate small angles between considered vec-
tors and consequently large errors in results.

New coordinate system

To understand the geometry of the system formed by
C-lines it is convenient to use a new coordinate sys-
tem (primed) with respect to the four considered
requirements. We can rearrange coordinates to be par-
allel to the Axyz, Axy, Axz and Ayz vectors and free coor-
dinates are delimited to the remaining five dimen-
sions, where the Tσ-vector should lie. The new coor-
dinate system is defined in figures 2a and 2b. New
coordinates may be counted by the transformation
T’σ = [R] · Tσ where [R] is a matrix:

(11).

This rotation changes the “geographic” coordinates
system into the coordinates where the four bottom
components of rotated T’σ will be zero:

(12).

Figure 2. A definition of the new coordinate system by the normal vectors Aij and Axyz: a) the sheering components of the stress ten-
sor are equal, e.g. σxy = σyx. This equation defines the hyperplane with the normal vector Axy which indicates the new coordinate in the
turned coordinate system; b) the isotropic component of the stress tensor has no effect on fault-slip data and could be assumed equal
to zero: σxx + σyy + σzz = 0. This equation defines the hyperplane with the normal vector Axyz. 
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Tσ={Axy x Axz x Ayz x Axyz x CI x CII x CIII x CIV}

(11),
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As the first 6 dimensions represent the symmetrical
stress tensor, we mark it as “symmetrical” subspace
and the remaining 3 dimensions as “antisymmetrical”
subspace. 

The same transformation C’ = [R] · C applied to vec-
tor C produces:

(13)

C-vectors geometry in 9D space

Any unit C-vector could be resolved into symmet-
rical Csym and antisymmetrical Casym components:
C = Csym + Casym. These components have the same
length |Csym|=|Casym|=1/√2 and are perpendicular to
each other: Csym · Casym = 0 (see Fig. 3). Both C and
Csym should be perpendicular to the Tσ-vector we
are looking for. The perpendicularity condition
does not determine which sign of stress is correct,
thus two numerical solutions Tσ and –Tσ are pos-
sible, but only one of them produces the observed
sense of movement (see Fig. 3).

To identify directly which sign is correct, we must
focus on the antisymmetrical component Casym of C-
vector. It is easy to show that component Casym lies in
asymmetrical subspace and is oriented in the same
direction as the fault lineation. In other words, the
sign of Casym indicates the sense of slip in real space:

(14).

The C-line could never be perpendicular to all of Aij
vectors because it does not lie in symmerical subspace
(with Csym). Therefore the considered eight vectors
(Axyz, Axy, Axz, Ayz, CI, CII, CIII, CIV) could never be
perpendicular to each other. It means the value of the
Gram determinant could never be equal to one. But
the distance between the C-vector and asymmetrical

subspace (with Casym) is always 45 degrees, which
constrains the maximum value of the square root of
the Gram determinant √G to be equal to 1/8, (i.e.
0.125).

So, what is the geometrical interpretation of C-lines
end points in symmetrical subspace? In fact, only
three parameters (α, φ, p) determine a C-line, there-
fore the end points of C-lines create only 3-dimen-
sional objects in 5 or 6D subspace, because explicit
mapping into the 3D subspace could be defined. This
complex spiral object can hardly be visualized. To
illustrate this situation in only 3D space, we can
imagine a helical line which is a 1D object (line), but
dimensional reduction from 3D space brings about
information loss. Another way is by excluding the α-
parameter. It is obvious that coordinates C’1 and C’2
(C’3 and C’4, respectively) represent similar expres-
sions with differences in goniometric function of the
α-parameter. New coordinates independent of the α-
parameter, i.e. C’’1,2 and C’’3,4, can be expressed as a
combination of two primed coordinates:

(15),

Figure 3. Symmetrical and antisymmetrical subspace of 9D space
reduced to three dimensions. An antisymmetrical component
Casym of the C-vector lies in antisymmetrical subspace. On the
other hand the symmetrical component Csym and the stress tensor
vector Tσ lie in symmetrical subspace. The opposite vectors are
marked with a minus sign. Vector C2 represents the same fault
and striation as vector C1 but with opposite sense of movement.
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(16).

Accordingly, only two parameters continue to repre-
sent a 2D object (part of the sphere surface) in 3D
space with base coordinates C’’1,2, C’’3,4 and C’5 (see
Fig. 4).

Conclusions

This paper was focused on some details of paloestress
analysis in 9D space:

1. A criterion based on the Gram determinant was
proposed to evaluate the numerical output error.

2. The antisymmetrical component Casym of a C-line
corresponds to the direction and sense of striation;
thus it may be used to recognize the correct sign of Tσ
solution.

3. The symmetrical component Csym of a C-line local-
ly represents 3D objects in symmetrical 5D subspace.

Paleostress analysis of fault-slip data in 9D is a good
way to illustrate the relationship between C-lines and
the possible stress tensor solution.

Figure 4. Distribution of end points of C-lines reduced into 3D space by exclusion of α-parameter. Two parameters remain (φ and p)
representing 2D objects (part of the sphere surface) in 3D space with base coordinates C’’1,2, C’’3,4 and C’5.
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